Advanced Programmable Clock

FEATURES

PIN CONFIGURATION

- Advanced programmable PLL design
- Very low Jitter and Phase Noise (<40ps Pk-Pk typical)
- Output frequency up to 375 MHz CMOS.
- Supports differential CMOS output to produce PECL, LVDS inputs.
- Crystal inputs:
o Fundamental crystal: $10 \mathrm{MHz}-30 \mathrm{MHz}$
o $3^{\text {RD }}$ overtone crystal: Up to 75 MHz
o Reference input: Up to 200 MHz
- Accepts $<1.0 \mathrm{~V}$ reference signal input voltage
- One programmable I/O pin can be configured as
 Output Enable (OE), or Frequency Selection input (FSEL), or Reference clock.
- Single $3.3 \mathrm{~V} \pm 10 \%$ power supply
- Operating temperature range from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Available in 8-pin MSOP/SOIC, 6-pin SOT Green/RoHS compliant packages.

DESCRIPTION

The ABPX1130 is a low-cost general purpose frequency synthesizer and a member of Abracon's Advanced Programmable Clock family. Abracon's ABPX1130 product family can generate any output frequency up to 375 MHz from fundamental crystal input between $10 \mathrm{MHz}-30 \mathrm{MHz}$, or a 3rd overtone crystal of up to 75 Mhz . The ABPX1130 produces differential CMOS outputs to support PECL, LVDS, and CMOS inputs.

BLOCK DIAGRAM

Advanced Programmable Clock

KEY PROGRAMMING PARAMETERS

CLK[0:2] Output Frequency	Output Drive Strength	Crystal Load	Programmable Input/Output (pin \#7)	$\begin{gathered} \text { \# of } \\ \text { Register } \\ \text { Banks } \end{gathered}$	Charge-Pump Current
Fout $=$ FIN * M / (R * P) where $M=6$ bit $R=1$ $\mathrm{P}=5 \mathrm{bit}$ 1. $\operatorname{CLK}[0: 1]=\mathrm{VCO} / 2$ * P 2. CLK[2]= FIN or FIN/2	Std: 10 mA (default) High: 24mA	+/- 200ppm tuning.	One output pin can be configured as 1. CLK2 $=$ FIN or FIN/2 2. FSEL - input 3. OE - input	2	4 levels of pump current setting

PIN DESCRIPTION

Name	Pin \#	Type	Description		
	(M)SOP-8				
XIN/FIN	1	I	Crystal or Reference input pin		
GND	2	P	GND connection		
CLK[0:1]	3,4	0	Programmable Clock Output [note:CLK0=~CLK1]		
VDD	5	P	VDD connection		
DNC	6	-	Do No Connect		
CLK2, OE, FSEL	7	B	This programmable I/O pin can be configured as CLK2 (FIN or FIN/2) output, or OE input, or Frequency Selection (FSEL) input pin. This pin has an internal $60 \mathrm{~K} \Omega$ pull up resistor.		
			State	OE	FSEL
			0	Tristate CLK[0:1]	$\begin{aligned} & \text { Select Bank '0' } \\ & \text { ROM } \end{aligned}$
			1 (default)	Normal mode	$\begin{aligned} & \text { Select Bank '1' } \\ & \text { ROM } \end{aligned}$
XOUT	8	0	Crystal output pin		

Advanced Programmable Clock

ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	SYMBOL	MIN.	MAX.	UNITS
Supply Voltage Range	$\mathrm{V}_{\text {DD }}$	-0.5	4.6	V
Input Voltage Range	V_{I}	-0.5	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
Output VoItage Range	V_{O}	-0.5	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
Data Retention @ $85^{\circ} \mathrm{C}$		10		Years
Soldering Temperature			260	${ }^{\circ} \mathrm{C}$
Storage Temperature	T_{S}	-65	150	${ }^{\circ} \mathrm{C}$
Ambient Operating Temperature		-40	+85	${ }^{\circ} \mathrm{C}$

Exposure of the device under conditions beyond the limits specified by Maximum Ratings for extended periods may cause permanent damage to the device and affect product reliability. These conditions represent a stress rating only, and functional operations of the device at these or any other conditions above the operational limits noted in this specification is not implied.

AC SPECIFICATIONS

PARAMETERS	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Crystal Input Frequency	Fundamental Crystal	10		30	MHz
	3rd Overtone Crystal			75	MHz
Settling Time	At power-up (after VDD increases over 1.62V)			10	ms
VDD Sensitivity	Frequency vs. VDD $+/-10 \%$	-2		2	ppm
Output Rise Time	15pF Load, 10/90\%VDD, Standard drive		2.5	3.5	ns
	15pF Load, 10/90\%VDD, High drive		1.0	1.5	ns
Output Fall Time	15pF Load, 90/10\%VDD, Standard drive		2.5	3.5	ns
	15pF Load, 90/10\%VDD, High drive		1.0	1.5	ns
Duty Cycle	At VDD/2	45	50	55	\%
Max. output skew between same frequency clocks	Equal loading (15 pF). Equal frequency \& drive strength			500	ps
```Period Jitter, peak-to-peak* (measured from 10,000 samples)```	With capacitive decoupling between VDD and GND. Operating only one output.		40		ps

* Note: Jitter performance depends on the programming parameters.


## Advanced Programmable Clock

## DC SPECIFICATIONS

PARAMETERS	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Supply Current, Dynamic, with Loaded Outputs	IDD	At 10 MHz , load $=15 \mathrm{pF}$			15	mA
Operating Voltage	VDD		2.25		3.63	V
Output Low Voltage	Vol	$\mathrm{loL}=+4 \mathrm{~mA}$ (Standard drive)			0.4	V
Output High Voltage	Vor	$\mathrm{IOH}^{\text {¢ }}=-4 \mathrm{~mA}$ (Standard drive)	VDD - 0.4			V
Output Current	Iosd	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}, \mathrm{VOH}_{\mathrm{OH}}=2.4 \mathrm{~V}$ (Standard drive)		10		mA
	Іонд	$\mathrm{V}_{\text {OL }}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.4 \mathrm{~V}$ (High Drive)		24		mA
Short-circuit Current	Is			$\pm 50$		mA

## CRYSTAL SPECIFICATIONS

PARAMETERS	SYMBOL	MIN.	TYP.	MAX.	UNITS
Fundamental Crystal Resonator Frequency	Fxin	10		30	MHz
3rd Overtone Crystal Resonator Frequency	FXIN			75	MHz
Crystal Loading Rating   (The IC can be programmed for any value in this range.)	$C_{L}$ (xtal)	5		20	pF
Maximum Sustainable Drive Level				500	$\mu \mathrm{W}$
Operating Drive Level			100		$\mu \mathrm{W}$
Crystal Shunt Capacitance	C0			6	pF
Effective Series Resistance, Fundamental, $10-30 \mathrm{MHz}$	Rs			30	$\Omega$
Effective Series Resistance, 3 rd Overtone, $30-50 \mathrm{MHz}$ [CO<4pF, CL=5pF/8pF]	ESR			100/70	$\Omega$
Effective Series Resistance, 3rd Overtone, $50-65 \mathrm{MHz}$, [CO<4pF, CL=5pF/8pF]	ESR			60/40	$\Omega$
Effective Series Resistance, 3rd Overtone, $65-75 \mathrm{MHz}$ [CO<4pF, CL=5pF/8pF	ESR			45/30	$\Omega$

Note: A detailed crystal specification document is also available for this part

## Advanced Programmable Clock

Figure 1 below describes how to terminate the differential CMOS outputs of Abracon's ABPX1130 Programmable QTC clock for use with PECL or LVDS inputs.

The unique feature of differential CMOS outputs allows great flexibility for board designers. By standardizing on one termination scheme you can use the ABPX1130 for all your LVDS and PECL clock requirements up to 375 MHz .


Figure 1

The above layout allows the ABPX1130 to drive either a PECL or LVDS input by simply changing the value of R1.

## Advanced Programmable Clock

## PACKAGE DRAWINGS (GREEN PACKAGE COMPLIANT)

## MSOP 8L

Symbol	Dimension in MM	
	Min.	Max.
A	---	1.10
A1	0.05	0.15
A2	0.81	0.91
B	0.25	0.40
C	0.13	0.23
D	2.90	3.10
E	2.90	3.10
H	4.90 BSC	
L	0.445	0.648
e	0.65	



## SOP 8L

Symbol	Dimension in MM	
	Min.	Max.
A	1.35	1.75
A1	0.10	0.25
A2	1.25	1.50
B	0.33	0.53
C	0.19	0.27
D	4.80	5.00
E	3.80	4.00
H	5.80	6.20
L	0.40	0.89
e	1.27	



## Advanced Programmable Clock

## ORDERING INFORMATION

For part ordering, please contact our Sales Department:
30332 Esperanza., Rancho Santa Margarita, Ca 92688
Ph: 949-546-8000 Fax: 949-546-8001
PART NUMBER
The order number for this device is a combination of the following:
Device number, Package type and Operating temperature range
APBX1130-XXX X X-T


* PhaseLink will assign a unique 3 -digit ID code for each approved programmed part number.
* PhaseLink offers Green Package Only for this product family.

Part I Order Number	Marking	Package Option
ABPX1130-XXXSC	A3XXX	8-Pin SOIC (Tube)
ABPX1130-XXXSC-T	A3XXX	8-Pin SOIC (Tape and Reel)
ABPX1130-XXXMC	A3XXX	8-Pin MSOP (Tube)
ABPX1130-XXXMC-T	A3XXX	8-Pin MSOP (Tape and Reel)

Abracon Corporation, reserves the right to make changes in its products or specifications, or both at any time without notice. The information furnished by Abracon is believed to be accurate and reliable. However, Abracon makes no guarantee or warranty concerning the accuracy of said information and shall not be responsible for any loss or damage of whatever nature resulting from the use of, or reliance upon this product.

LIFE SUPPORT POLICY: Abracon's products are not authorized for use as critical components in life support devices or systems without the express written approval of the President of Abracon Corporation.

